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Abstract-Radiative heat transfer through a nonisothermal absorbing and emitting grey gas between 
heated walls is studied. Specific attention is directed toward the evaluation of temperature near the 
walls and of the precise evaluation of energy flux by means of methods and tabulated functions 
studied by Chandrasekhar and Ambartsumian. The precision achieved permits an assessment of 
the accuracy of existing approximate methods and of the errors incurred in numerical solutions 
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of the governing equations. 

NOMENCLATURE @@, @a@, universal functions introduced 
integroexponential function of in equation (9) (see also equa- 
order n (see equation (2)); tion (12)); 
auxiliary function introduced in 6, optical depth in absorbing layer 
equation (50); dt = kdx; 
volumetric absorption coeffi- a, Stefan-Boltzmann constant ; 
cient ; @P(S), resolvent kernel evaluated at 
geometric thickness of plane (1 = 0, i.e. L (0, E; LL); 
layer ; w, fL), function defined by equation 
resolvent kernel (see equation (42). 
(20)) ; 
net rate of energy transport per Subscripts 
unit area, qf - q-; wl, evaluated at left wall; 
half-range fluxes defined follow- w2, evaluated at right wall. 
ing equation (3); 
dimensionless fluxes introduced INTRODUCTION 

in equation (18); THIS PAPER adds to the already considerable 
internal heat source per unit amount of literature on the transport of thermal 
volume per unit time ; radiation through an absorbing and emitting 
temperature, absolute; medium contained between heated, opaque 
geometric depth in absorbing walls. Its principal aim is to provide a standard 
layer ; of accuracy for those predictions that at the 
Chandrasekhar’s Xfunction (see present time are most susceptible to numerical 
equation (30a)); errors. In particular, attention is directed 
Chandrasekhar’s Y function (see toward the evaluation of wall temperature slip, 
equation (30b)); a discontinuity effect that occurs for finite 
nth moment of X function (see values of optical thickness when energy trans- 
equation (31a)); port is characterized solely as a radiant phe- 
nth moment of Y function (see nomenon. This objective follows immediately 
equation (31b)); through use of methods developed by Ambart- 
surface emissivity; sumian and Chandrasekhar for use in radiation 
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analysis. The present paper relates wall condi- 
tions to quadratures of functions which have 
previously been calculated to a considerable 
degree of accuracy. Additional labor is thus 
precluded through the use of existing tables 
and, at the same time, a check is provided 
whereby approximate methods may be judged. 

In the problem considered here two parallel, 
opaque walls, held at different temperatures, 
are assumed to radiate isotropically. The wall 
emissivities are not necessarily the same but 
they are taken to be independent of radiation 
wave length. The intervening medium has similar 
properties: it is isotropic, it radiates diffusely, 
and its emissivity is expressed by an appropriate 
average over the frequency spectrum. A number 
of publications have dealt specifically with this 
physical case; the review article by Viskanta 
and Grosh [1] furnishes a ready survey of 
available calculations. It is difficult to give an 
adequate chronological development of the 
theory and results, partly because of analogies 
and interrelations existing between similar 
considerations arising in the study of stellar 
and planetary atmospheres as well as in the 
study of neutron transport and molten trans- 
lucent materials. The basic theory of radiative 
transport is developed in the books of Chan- 
drasekhar [2], Kourganoff [3], and Sobolev [4]. 
Specific adaptations to the interests of the 
mechanical and thermal engineer are to be 
found in the papers of Viskanta and Grosh [S], 
Usiskin and Sparrow [6], Meghreblian 173, and 
the two authors Howell and Perlmutter [8, 91. 
Usiskin and Sparrow appear to be the first 
to give detailed solutions for a uniformly 
generating medium between black walls. They 
pointed out the applicability of their results 
to the case of nonblack walls. Perlmutter and 
Howell gave a precise synthesis of the use of the 
black wall solutions and used a Monte Carlo 
method to carry out their numerical calculations. 

The computational problem can be resolved 
into one of solving uncoupled integral equations 
[see equations (1 la) and (1 lb)]. A wide diversity 
of methods exists and the current literature 
displays this freedom of choice. The thorough 
study of different techniques is fully exemplified 
in the treatise by Kourganoff [3] but his extensive 
investigation is held within reasonable bounds 

only after attention is limited to a semi-infinite 
medium. Sobolev [4] has systematically pursued 
the objective of calculating the resolvent kernel 
of an integral equation with a known kernel 
and the present paper uses this approach. The 
actual calculation of the resolvent kernel 
remains a computational task but the methods 
introduced originally by Ambartsumian and 
developed in [2], [3], and [4] provide a direct 
way to evaluate conditions on the boundary 
of the medium. This is especially fortuitous for 
the problem at hand since virtually all other 
available techniques suffer their maximum 
inaccuracy at the boundary. The smoothing 
property of integrals allows remarkably good 
approximations to be achieved with small effort. 
It is known, for example, that linear approxima- 
tions to the emission function predict flux with 
an error of, at most, 2 or 3 per cent. This 
suggests that standard iterative techniques 
should converge rather rapidly. A cursory 
study of the integral equations shows, however, 
that in the immediate vicinity of the walls the 
emission function is a nonanalytical function 
of distance from the wall. The accuracy of the 
convergence in this vicinity is thus not easy 
to estimate and the availability of a check on 
end conditions is of mathematical as well as 
physical interest. 

GENERAL ANALYSIS 

Governing equations 
As indicated in Fig. 1 we consider two walls 

of infinite lateral extent and a distance L apart. 
The single coordinate x is measured relative 
to the left wall. Known physical conditions 
include the temperatures and emissivity coef- 
ficients of the two walls and the absorptivity 
of the intervening medium. Thus, using the 
subscripts wl and ,~2 to denote conditions 
at the walls at x = 0 and x = L, respectively, we 
have given Twl, Twz, ~~1, EWZ as well as k, the 
volumetric absorption coefficient of the medium. 
In addition, the possibility of heat generation 
within the medium is included and to this end 
we assume known the source function S which 
determines the energy generated per unit 
volume per unit time. We shall limit ourselves 
always to the special case for which S/k is 
uniform, the so-called constant source case. It 
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FIG. 1, Parallel walls separated by absorbing medium. 

remains to predict the temperature distribution 
through the medium as well as the heat flux, 
that is, radiative transport of thermal energy 
per unit area per unit time. 

The integral equation that fixes the tempera- 
ture distribution is (see, e.g. [lo]) 

+ t F aT4(&) EI@ - &I) d& (1) 

In this equation and subsequently, optical path 
length 5 is used instead of physical distance x. 

The relation 5 = 5 k dx holds and when 

x = L, f = ft where 5~ is the so-called optical 
thickness of the plane layer of absorbing 
material. Also, u is Stefan-Boltzmann’s constant 
and the functions &‘I(& E&7 are defined by 

WC) = 1 exp [- 5ictl p-2 dp 
.I 

i, 
m 

= 1 exp k-4~11 dxl (2) 

i 
Al 

The remaining undefined terms are associated 
with the concept of “half-range” fluxes. Flwr 
q(e) is, by definition 

4(0 = 470 - 4%) (3) 

where q+(t) is the energy per unit time emerging 
from the right face of a unit area at [ and q-(f) 
is energy per unit time emerging from the left 
face. The half-range fluxes q+(f) and q-(f) are 
reckoned positively in the positive and negative 
f directions, respectively, so that q(5) > 0 
corresponds to a net energy flow in the positive 
E direction. 

Additional theoretical complexity results from 
the fact that equation (1) does not evolve in a 
form written explicitly in terms of the given 
physical parameters, that is, the wall tempera- 
tures and emissivities. Boundary conditions are 
required and for opaque walls these take the 
form 

4 + WI = EWl aT,4, -t- (1 - %ul> 4,r 

qi2 = l wz uTtj2 4- (1 - 902) 4;: > 
(4) 

Equations (4) are energy balances that equate 
total energy leaving the walls to wall emission 
plus the reflected portion of the incoming 
energy flux. It is not necessary to assume opaque- 
ness but only under this condition can the 
terms in parentheses in equations (4) be related 
directly to emissivity. 

Setting qWl = q& - qwl, we find, after alge- 
braic manipulation of equations (4), 

A companion relation to equation (1) is 
provided by the formula for flux; namely, 

4(0 = 2q;r E3G) - 2q;2 E3 ((I, - n 

i- 2 ANT” sgn (5 - 51) EZ (14 - &I) dfr 

(6) 

From equations (6) and (1) one deduces 

d&9 S -- =- 
d5 k 

(7) 

It follows that radiative flux is constant between 
the two walls, independent of position, when 
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S = 0. In general, integration of equation (7) 
yields 

BWZ - qwl = ~(Slk) dE 

0 
(8) 

Reduction to canonical form 
The transformation 

01”1@) - 4;z = (s;i - G) @tn + $W) (9) 

is now introduced and equation (1) then becomes 

1 

m 

The linearity of equation (10) permits one to 
express its solution in terms of solutions of two 
independent integral equations : 

WO = a + 4 “r” @,(&) &(j5 - &I> d& (1 lb) 
0 

The functions O(t) and O,(t) are universal 
functions for the present planar problems and 
from them the solution for arbitrary boundary 
conditions can be calculated. Equations (11) are 
independent of the parameters affecting the 
particular conditions to be specified and this 
permits a physical interpretation of the universal 
functions in terms of black wall conditions, that 
is, wall emissivities such that ~~1 = +,z == 1. 
Starting initially with black wall conditions and 
with S = 0, the function 

S=O 

satisfies equation (1 la). Similarly, if S f 0, 
Twl = Twz, and ~‘~1 = •~2 = 1, the function 

satisfies equation (11 b). Attention can therefore 
be limited to the case of black walls insofar as 
the integral equations (1 la) and (1 lb) are 
concerned. It remains, however, to give explicit 
expressions for temperature distribution and 
flux in terms of O(t), O,(t), and the basic 
physical parameters. 

From equations (5) and (8) 

4 $ - qz = (UT:, - aT,$,) - 
i 

Equations (6) and (9) yield 
[I> 51, 

4wl = (4;,1 - G) 1 s - 2 5 O,(&) E2(&) dfl 

0 0 

03) 

(14) 

These latter relations combine to give 

(a~~~-~T:~)+~[-(t-l)~~+2~~+;1,-2~~~,(i~)~~(~~)d~~] 

4 + - 4;2 = 
0 

Wl EL 
(15) 

1 + I’, + -$;, - 2 1 - 2 WI) E2(E1) d51 
w I[ s I 

0 
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Since from equations (5), (8) and (9) 

aT4 - UT& = ( q,fi- q,J @(t) + (A- +m +;[W+ (&- 1) EL] (16) 

we may combine the last three expressions into the desired relation in which temperature distribution 
is given in terms of Twl, Tt02, ~~1, ~~2, t, [L, S/k, O(t), and O,(5). Finally one has, 

(0% - a%) [e(5) + ($s - 1) Q] 
oT4 - UT& = - 

I+ &+&-2 
( 1 

+ _s 

Q 
k 

W W I 

o (5> + 
*s 

&+$2-2)-($2-+~] @(O+($2-1)(Cr.-Q~)+~~(-$-l)(;2-l)Q’ 
W 

1+ $l+;2-2 

( 
Q 

W > i 

(17) 

qua= 

(0% - 0%) Q - ; [ Qs + EL (2 - 1) Q] 
(18) 

1+ 

where we have introduced the notation 

Q = 1 - 2 7 WI) E&3> dh 

Qs = 2 F @,(h) E2(&) c-It-1 

SOLUTIONS 

Figures 2 and 3 give solutions to equations (11) 
for a range of optical thicknesses. As remarked 
previously, comparable results have already been 
published. The present curves were calculated 
to a degree of accuracy in excess of the line 
width used. The values of the functions at the 
walls were checked numerically to three signifi- 
cant figures and involved discernible differences 
from some earlier results for which less precision 
was attempted. The curves may prove useful as a 
standard in the evaluation of methods for which 
it is difficult to assess rapidity of convergence. 
Indirect calculations involving random walk or 
Monte Carlo concepts, for example, or of 
arbitrarily imposed variational conditions, may 

be especially useful in extension to other geo- 
metries or conditions, yet need some estimate of 
residual errors. 

The problem at hand dictates consideration of 
the conventional Fredholm integral equation 

F(t) = G(e) + S ?F(&) &(I[ - &I) d5i (19) 
0 

along with its assumed inversion 

F(6) = G(5) + ‘s” G(&) U& 41; 5‘~) d51 (20) 
0 

Equation (19) has been written with a kernel 
to conform with both equations (1 la) and (1 lb). 
The function G(t) will, obviously, be equated 
later to Es([)/2 and l/4 to get the solutions of 
interest. In equation (20), L([, [i; 5‘~) is the 
resolvent kernel with dependence on the para- 
meter [L and is independent of G(5). 

We shall recount here sufficient information 
about the resolvent kernel to predict the desired 
physical quantities. A formal presentation of 
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FIG. 2. Universal function O(t) for different values of optical thickness. 

the theory can be found, for example, in [4, p. 299 
et seq.]. Direct calculation yields 

expresses the resolvent in terms of the uni- 
dimensional function Q(4) with the parameter 5~. 

The function a(E) can be calculated as a 
solution of the equation 

We choose, however, to express it in terms of 
auxiliary functions. To this end, the function 

where 

Q(4) = L(O, E; SfL) 

From equation (21), one has, for & > 5 

ml, 6; 5L) = @(h- E) 

(21) 

(22) 

is introduced together with its inversion 

F’(6, P) = e-t/P + ? exp [- 511~1 L(5‘, 51; 6~) d51 
0 

(27) 

-@P(~L- x) @C$L - x- El + 01 dx (23) 

which, together with the symmetry property, 

US, 51; fL) = -WI, 5; 6L) (24) 
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FIG. 3. Universal function 8,(f) for different values of optical thickness. 

From equation (26) one deduces 

s’ 45, ~1 dp + ; WL - 5, p) dp = 2 (28) 
0 0 

Setting 5 = 0 and using equation (27) to evaluate 
this last relation, we get 

5 ~(cL, 4~>+ + j W,~L) dP = 2 (29) 
0 0 

where 

X(P, 6~) = 1 + y@&) exp [--- El/p] d& (30a) 
0 

% [L) = exp [- ~L/PI 

-t- '_f @k% - 51) exp[- 51/p] d51 (30b) 
0 

The auxiliary functions X(p, 5~) and Y(p, tL) 
have been calculated by Chandrasekhar and 
Elbet-t [I 1, 121 and subsequent solutions are 
related to them. (In the Russian literature they 
are denoted as P)(P, 5‘~) and #(CL, 5~) and called 
Ambartsumian’s functions.) If the nth moments 
of X and Y are defined as 

a&L) = i -VP, 5~) pn dp @la) 
0 

P&L) = j Y(cL, ~L)P* dp 

equation (29) takes the form 

a0 + PO = 2 

@lb) 

(32) 
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If equation (28) is integrated with respect to .$ X, Y functions. This follows after a double 
between 0 and [L, one has integration of equation (34). The final 

1 dP y F(& /L) dt :=: EL 

relations are 

b 0 
(33) @(a = M(S, a 

multiplying equation (21) by exp [- &/CL] and -t ? [@(h) M(4 - (1, 5L) - @(5L - 55) 

integrating with respect to 51 between 0 and f~, 
b 

N(f - t1, &)1&h fW 
we get 

A further integration with respect to ,$ then gives 

(35) 

Since the double integral on the right can be 
reproduced by a p-wise integration of the same 
equation, one has 

0 

Equations (36) and (33) give, finally, 

a1 - Bl = Ml - Ha0 - PO)] = PO& (37) 

The functions X(p, &) and Y(p, &) are 
actually calculated as solutions of coupled, 
nonlinear integral equations [see 2 or 43. A 
non~queness actually arises in the ~al~lations 
and is associated apparently with the conserva- 
tive nature of the radiation field. Equation (37) 
provides a normalizing relation that is used to 
fix the proper physical solutions. It should be 
remarked that in [12] an asterisk is used to 
distinguish the proper functions from a second 
tabulated pair with an arbitrarily imposed 
norma~zation. 

Equation (23) relates L(&, E; 5~) to Q(f) and 
it remains to express the latter in terms of the 

Results directly applicable to the functions 
O(f) and O&) now follow. In particular, 

@(Q = * + 24, &) 

PVL - E, i4‘L) - v5‘, 4dl (40) 
and 

yrf&, &) 
@&) = 4 
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where 

!?‘(5, 6% = 1 + j @p(@ d& 
0 

and 

%CL, &) = l/PO 

The wall values are 

(42) 

(43) 

0(O) = U~(~~)~2, 0(&) = ~0(~~)~2 (44a) 

@a(O) = @s(&) = l/(4/30) = (l/S)/[l - 0(O)] 

(44b) 

and the flux integrals yield 

Q = 1 - 2!0(B1) ~52(h) d& = ~o(~l + #h) 

VW 

Qs = 2 7 @&3 Ez(h) d& = 5~12 Wb) 

It folh%vs from equations (#a) that the 
average of the two wall values is 112, since 
ao + PO = 2. This conclusion fohows indepen- 

dently from the more general result that 0(t) 
is ant~ymmetric about the point [/(.L = 1,/Z, 
0(~~~2) = l/2. The function 0,(f), on the other 
hand, is symmetric about f/&, = l/2. Table 1 
gives values of ao, l/(4/30), al+ PI, and/3o(al+ /A> 
through the range 0 < CL < 3. These numerical 
results were derived from the work of Sobouti 
1131. Numerical values for [L > 3 are not 
included in the Table since the asymptotic 
expressions appearing at the bottom of the 
table are of comparable accuracy. These asymp- 
totic forms will be discussed in the next 
section. 

Equations (17) and (18) together with equa- 
tions (45a) and (45b) permit ready calculation 
of temperature distributions and fluxes for 
arbitrary conditions. The functions O(f) and 
O,(5) together with the appropriate values of 
a&) and ,6&r) are the requisite b~Iding 
blocks. An additional advantage arises from 
the fact that for .$A @ 1 and & 9 1 ana- 
lytic expressions are available for the X and 
Y functions and therefore for their moments. 
These results can be used to calculate limiting 
forms of, say, flux and temperature slip. Before 
proceeding to these expressions it is convenient 
to list the equations of major interest, modified 
to conform with the fmal ter~nology: 

Tuble 1 

s’l; QO (114i9d a1 + 81 130ca1 + 811 

0.1 
o-2 
0.3 
0.4 
0.5 

;:; 

1-O 
1.5 
2.0 
2.5 
3.0 

1.1419 O-2914 
l-2228 0.3217 
1.2838 0.3491 
1.3331 0.3749 
1.3746 0.3998 
I .4103 0.4240 
1.4692 0.4711 
1.5163 0.5170 
l-6024 0.6289 
l-6615 0.7388 
1*7OSl 0+?480 
1.7386 0.9568 

l-0672 o-9157 
I.0926 0+x491 
I.1080 0.7934 
1~118.5 a7458 
1.1259 0.7040 
1.1316 0.6672 
1.1392 06046 
1.1440 O-5532 
1~1.501 0.4572 
1.1525 0.3900 
1.1538 03401 
t-1542 03016 

[L>l - 
2 _ 2w3) 

y”‘b + 63 
413 

Y + IL ifs Y + 5L 

y = 1.42089 
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oT4 - UT& = 

(473 

(48) 

(49a) 

4Wl 

[ 1 - 
S/k = Twl=Tru~ 

Wb) 

Equation (46) provides the additive components of UT* - aT& that are attributable to differ- 
ences in wall temperatures and source strength. The latter ~ont~bution is a coupling of the 
functions @(J!) and @I,([) except when the walls have equal emissivities. Equations (47) are exact 
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forms of temperature slip for zero source strength 
and for equal wall temperatures, respectively. 
Equation (48) gives the complete expression for 
wall fluxes and equations (49) are the separate 
components from which total flux can be 
calculated. 

Figures 4, 5, 6, and 7 were calculated from 
equations (49a), (49b), (47a), and (47c), re- 
spectively, for ~1 = 0.8 and various values of 
~~2. From Sobouti’s [13] tables of moments an 
accuracy to four decimal places is immediately 
possible. 

‘.O1 

I 
00 I.0 t; 2.0 30 

FIG. 4. Dimensionless flux for zero source strength 
showing dependence on optical thickness and wall 

emissivities. 

6,,,=0.8 

00 IO 
c, 

2.0 30 

FIG. 5. Dimensionless flux for equal wall temperatures 
showing dependence on optical thickness and wall 

emissivities. 

Limiting solutions 
When optical thickness is infinitely large one 

has 

-VP, 43 -+ HP), VP, 5L) -f 0, fL + co (50) 
H.M.-3N 

G* = 
01 +,=08 

\ 

I 
OO 

I I I I I J 
0.5 I.0 

r; 
2.0 3.0 

FIG. 6. Dimensionless temperature slip for zero source 
strength showing dependence on optical thickness and 

wall emissivities. 

Co0 I.0 r, 20 30 

FIG. 7. Dimensionless temperature slip for equal wall 
temperature showing dependence on optical thickness and 

wall emissivities. 

where H(p) is the function introduced by 
Chandrasekhar [2] to study radiation transfer 
in a semi-infinite medium. At the other extreme 
of thickness a first approximation yields 

-VP, IL) -+ 1, W, (L)-+ exp I--~L/P~, 

Sobolev [14] has extended equation 
follows : 

5‘L --f 0 
(51) 

(50) as 

J$4 4~) - ffW - P~~OI(~L + r> (5W 

Y(P, td -dW/(t~ + r), C-L % 1 (52b) 

where y is a constant equal to twice the ratio of 
the second and first moments of H(p), Analysis 
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of the semi-infinite case [see, e.g. 31 gives the 
values of 2 and 2/d/3, respectively, for the zeroth 
and first moments of H(p) and y = 1.420892. 
It follows, after integration of equations (52), 
that 

2- a0 = PO - (2/2/3)/(r + 5~) (53a) 

al + p1 - 2id3 (53b) 

From [2, p. 2041, the corrected forms of equa- 
tions (51) are 

Y(k TV) m exp [-t&l + 

’ - E2(‘L) ~(1 - exp [--[&I), fL < 1 1 - 2Ed.t~) 
(54b) 

and, after integration, 

2 - a0 = PO m [l -t E2(EL>l/2 (554 

a1 + Pl = 4 [1 + =3(h)] + 

_; [1 - E2GtL)l [I - 3~4(5dl 

[1 - 2Edf~)l 
Wb) 

0.6 

04 

+ 

0.2 

EI% 
OO 

L 
0.5 I.0 

Figures 8 and 9 have been drawn with an ex- 
panded scale to show how well the approxima- 
tions of equations (53) and (55) predict the flux 
and temperature slip for black walls and S = 0. 
A striking feature is the accuracy with which 
the asymptotic expression forfia(ar + pi) predicts 
flux through the complete range 0 < .$L G_ cc. 
From equations (53) one has 

1 
Bo(a1 + 81) ------------- 1.06567 + $ [L (56) 

and the error incurred at SL = 0 is only 6 per 
cent. Since from equations (55) /&(a1 + Br) = I 
at .$L = 0, one concludes that 

1 
Bo(ai + Pi) - -- -~~ 

l+$lTL 
(57) 

must provide a good interpolation formula. 
Corresponding to this approximation one has, 
in general, 

I.5 
c; 

2.0 2.5 3.0 

FIG. 8. Comparison between exact and approximate predictions of flux for black walls and zero source strength. 
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Of 

o-4 

I 00 
f I I I I I I I I I I 

o-5 I.0 I.5 
1 

2.0 2.5 3.0 
4 

FIG. 9. Comparison between exact and approximate predictions of temperature slip for black walls and zero 
source strength. 

- -!------l+$~l. 
%1 EW2 

Yz A- 

Wb) 

Equation (58a) has been proposed by many 
authors [see, e.g. 15, 8, 161 and its predictions for 
•~1 = ewe = 1 are included in Fig. 8. A further 
discussion of the approximation is given in the 
next section. It sutTices here to remark that the 
predictions may be acceptable for many pur- 
poses. The maximum error is about 3 per cent 
and occurs near .$L = 0.4. 

Figure 9 shows, as might be expected, that 
the asymptotic predictions of temperature slip 
deviate more drastically from the exact predic- 
tions for decreasing vahtes of optical thickness. 
Equations (55) reveal that the slope of the curve 
becomes ~o~th~~a~y infinite at & = 0. An 
algebraic interpolation formula is thus possible 

only in a very restricted sense. The figure shows 
a plot of the relation 

which is a result of the special approximation 
discussed in the next section. The true value of 
temperature slip is achieved at EL = 0 and for 
infinitely large values of & the function vanishes. 
The rates of change with & are, however, 
incorrect in both limiting cases and a serious loss 
of accuracy occurs in the transition region. 

Approximations from interpolation formula 
Equation (57) has been shown to lead to an 

unusually good interpolation formula for flux. 
Even though a comparabIe degree of excellence 
cannot be maintained in estimating tem~rature 
slip, it is possible to use the interpolation to 
derive temperature distributions which will 
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maintain a fair accuracy except in the vicinity 
of the walls. Such an approach is considered 
here. The development is intimately related to 
the so-called diffusion approximation [see 17, 8, 
91 which, in turn, utilizes the Eddington [18, 
p. 1011 relation 

4 doT4 
-s-&- =4 

for flux. Equation (60) is an asymptotic relation, 
E+ 1, and obviously suffers its greatest 
inaccuracy in the immediate vicinity of a 
boundary. 

From equation (60) and equations (58) one has 

Equation (Ma) yields 

@la) 

@lb) 

iz 
@(5)=-fi+aSL ------+A (624 

and equation (61b) gives 

s&g = - .$ f - 2 
i ! 2 + B (62b) 

where A and B are constants of integration and 
in the latter equation use is made of the known 
symmetry of O,(t) about ft/2. 

The single constant appearing in each of 
equations (62) limits the flexibility of the results. 
Thus, we are not able to use all the available 
info~ation. Here, the flux integrals in equations 
(45) will be used to find A and Band comparisons 
will then be made with the true wall values given 
by equations (44). 

If equation (62a) is substituted in the integrand 
of equation (45a) and the approximation of 
equation (57) is used, one has 

At [L = 0, the equality holds, independent of A, 
and for & B 1 

from which A follows as a function of [L. One 
thus gets 

We observe that O&/2) = 4 which 
also 

(64) 

is exact; 

e(o)= l-&&= 1 - @(&) (65) 
4 

Since O(0) = 1 - 4 ,Bo(,$L), the approximation 
imposes the condition 

and this must be compared with the exact 
relations 

80(O) = 1, BOGfL) - ,.,:;‘:’ AL (66) 

which follow from equations (55a) and (53a). 
A considerable loss in accuracy is obviously 
incurred if equation (64) is used to determine 
@(O). 

Equation (64) predicts the temperature sIip 
given in equation (59) and plotted in Fig. 9. 
Together with equation (46) it leads to 

- Q (t - 5L) + 1111GJ2) - $1 
(l/GUI) + (1/%2) - 1 5 z fc 

(67) 

which is equivalent to the diffusion approxima- 
tion of Howell and Perlmutter [8, equation (58)], 

If equation (62b) is used together with 
equation (45b), one has 

2B [+-E&L)] =F (68) 



This equality holds, independent of B, when 
[L = 0, and for .& 9 1 becomes 

The resulting expression for B gives 

The desirability of using these simplified ex- 

which agrees with Howell and Perlmutter’s pressions must be based on the objectives at 

diffusion approximation [8, equation (59), hand and the merits of having algebraic relations 

EU;Z = 11. for ready calculation. For more exact predictions, 

It remains to see how well equation (69) the tabulated and graphical values of CZO(~L) and 

estimates O,(O) or O&!L). Since from equation /30(&) are available. 

(44b) O,(O) = 1/[4~0(&,)], we have the exact 
conditions 
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R&mm&On a &die le transport de chaleur par rayonnement a travers un gaz gris non isothenne 
absorbant et emetteur entre des parois chauffees. On a specialement fait attention a l’evaluation de la 
temperature pres des parois et du flux d’energie par les methodes et les fonctions tabulees etudiees 
par Chandrasekhar et Ambartsumian. La precision obtenue permet de se rendre compte de la precision 
des methodes approchees existantes et des erreurs qui se produisent dans les solutions numCriques des 

equations fondamentales. 

Z~mme~a~ng-Zwischen beheizten W&den wird der W~~e~~rg~g durch Strahlung durch ein 
nichtisothermes, absorbierendes und emittierendes graues Gas untersucht. Besondere Beachtung 
dabei findet die Berechnung der wandnahen Temperatur und die genaue Bestimmung der Energie- 
stromdichte nach von Chandrasekhar und Ambartsumian untersuchten Methoden und tabellierten 
Funktionen. Die so erreichte Genauigkeit erlaubt eine Beurteihmg der Genauigkeit von bestehenden 
Nlhernngsverfahren und der Fehler, die in numerische Losungen der massgebenden Gleichungen 

eingehen. 

.~HEoT&~~~-~3y~aeTcK pa~~ia~~loHHb1~ Ten~o~epe~oc nepea ne~3oTep~lj~qec~~~~ nor;ro- 
4a~~~~ Ii ~~3~~~a~~~~ cepbIli raa 8reittny HarpeT~~[~C CTeH~a~~~. Ocotioe BH~i~aHlie rranpas- 
ZeHo Ha onpegexeime renneparypbr y c~e~0H 11 Ha T0qHoe onpenenemre noToHa aneprsrt III> 
~MeTO~y H Hepe3 Ta6yJmpOBaHHhIe &HHnMM, H3yYeHHbIe %HQaCeHXapOM It Afipa’l’~yMmIov . 
~OCTlIIWyTWI TOYHOCTb II03BOJIReT OUeHI?Tb TOqHOCTh CyqeCTByIOqHX lIpH6JIlWeHHbIX UeTO- 

~0~3, a TaHEf(e irorpemaocT~i,sc'rpesaro~necn B wcneInibIx perueamx OCHOBEI~~ xypaeaemii. 


